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ABSTRACT 

A brief history of the development of tables of random numbers is 

presented. This is follm-red by an investigation of the generation of 

unifor~~y distributed random numbers on the CDC 1604 digital computer. 

Certain congruential relations are examined in order to determine 

parameters that will produce acceptable random number sequences. Stc>.-

tistical tests of the generated numbers are described and the results 

of these tests are presented. 
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PREFACE 

Statistical sampling techniques using a "Monte Carlo" method can 

require a large supply of random numbers. Such techniques have been used 

in the evaluation of definite integrals, the solution of ordinary and 

partial differential equations, the solution of integral equations and 

matrix inversion, to mention only a few applications~ On the other hand, 

some problems, described in terms of a stochastic model, can only be 

solved by recourse to sampling techniques, as for example, mathematical 

rrar gaming problems • 

"When such models are programmed for a high speed digital computer, 

it is necessary to produce large numbers of random numbers quickly. The 

tables of random digits or random uniform numbers customarily used in 

hnnd calculations do not lend themselves to use in the high speed compu­

ter. It is inefficient to read into the computer the large number of 

random digits required to meet the demand for such numbers arising in 

problems which are otherwise within the capabilities of the machines 

Using the same numbers repeatedly in a given problem would introduce 

bias. 

It has been suggested that special equipment which utilizes a phys­

ical random process be used to produce the random numberso On the sur­

face, this would seem desirable but, in practice, difficulties immedi­

ately arise. First, the construction and maintenance of such a device 

would be quite expensive. To be useful, it would be required to produce 

a number in the order of a few microseconds for extencted periodso Reli­

ability requirements would necessitate its output to be continually 

checked for randomnesso The second difficulty i s that such a random 
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device would not permit the recalculation of a problem using the same 

generated numbers& This could prove to be P. handicap in checking on 

machine operations. 

These difficulties lead to the exploration of arithmetical schemes 

for generating numbers which take advantage of the computer's high speed 

and place minimum demands on computer memory storage. Such numbers 

could not be considered truly random; hence, the adoption of the term 

"pseudo-random numbers". 

It is the intent of this paper to present a brief historical devel­

opment of random number generation and to explore, in particular, the 

multiplicative congruential type of generator for adaptation to the 

CDC 16o4. 
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I.. INTRODUCTION 

1. Kendall and Smith's Random Sampling Numbers. 

It might be supposed that if one wanted to obtain a sequence of 

random digits that almost any method that employed some sort of chaotic 

selection would sufficeo Observing the indications of a roulette wheel 

or, perhaps, an unsystematic selection of digits from a large telephone 

directory might seem like "reasonA-ble" methods. Once the digits were 

collected, however, a problem would arise. By what criterion could 

their randomness be judged? 

It was to this problem that M. G. Kendall and B. Babington Smith 

addressed them~elves in their now classic work, "Randomness and Random 

Sampling Numbers". 1 They start their paper with a discussion on 

the relation between randomness and probability .. 

In colloquial speech the word "random'' is applied to any method 
of choice which lacks aim or purpose; and this usage is also found 
in certain sciences. In statistics, however, the word has a some­
what different and more definite significance, closely related to 
probability. It appears, in fact, that for statistical purposes 
the ideas of randomness and probability are inseparable, whether 
one belongs to the "intuitive" school which regards probability as 
an undefinable, or to the opposing "frequency" school which seeks 
to explain it in terms of statistical frequencies . 

Having linked the concepts of probability and randomness, Kendall 

and Smith concede that there are mRny controversial areas that pose 

abstract problems that are,--- "verging, at times, on the theological." 

In the interest of getting on with the more mundane problems of Random 

Sampling Numbers, they state: 

We take randomness and probability to be undefined ideas obeying 
certain intuitively formulated principles, which will be found suf­
ficient to give results of practical application. 

1Numbers in brackets refer to references cited in the Bibliography at 
the end of the paper. 
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The authors note that any combination of digits could be considered 

a random set, in that all combinations are possible when drawine from an 

infinite universe of digitso However, not all combinations are practical 

for random sampling; for example, a block of digits which are all the 

same. For purposes of sampling, a definition of Random Sampling Number 

i~ made: a set of numbers which can be used for random sampling, not 

necessarily a set obtainP-d by random methods. It is Kendall and Smith's 

intention to produce a table of random digits and to test these for 

acceptability as Random Sampling Numbers. That is, Random Sampling Num­

bers is a collective term for a series of random digits. 

Such a set of Random Sampling Numbers should conform to the notion 

of relative frequency. That is, if samples were taken from a universe 

consisting of an infinite number of digits such that each of the ten 

digits 0 through 9 may be expected to appear with the s~me frequency, 

then, it is expected that in a large number of trials each of the digits 

will appear approximately an equal number of times. Further, it would 

be expected that each pair of digits would occur approximately the same 

number of times, similarly triples, etc.; that is, no digit would tend 

to follow another digit in any consistent pattern. 

Here then is an important distinction: any given set of N numbers 

need not follow such expectations but a set of Random Sampling Numbers 

should do so. Hereafter, we shall identify such a set of Random Samp­

ling Numbers as a random set. 

In order to ascertain whether a given set of digits is a good enough 

"approximation" to a random set, the observed frequencies may be compared 

to the theoretical frequencies by means of a chi-square testo On "purely 
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arbitrary grounds", Kendall -3.nd Smith elected to say that a set of num-

bers is acceptable if the resulting chi-square statistic is within the 

range of 0.01 ~ P ~ 0.99, where, with Oj the observed and Ej the 

expected frequencies of the jth digit, 

and 

9 

x2 = L 
j=o 

00 

p = J 
X 

00 

J 
0 

e 

e 

x2 
2 X 

9-1 
dX 

- x2 9-1 -z- X dX 

with 9 being the number of degrees of freedom. 

Having thus determined the characteristics of this set, the authors 

then proceed to establish a series of four tests for a set of digits to 

be considered as a random set. Subsequently, these tests have become 

standard in the literature on random numbers. Briefly, they are as fol-

lows: 

(a) The frequency test to determine if all the digits of a set 

occur in approximately equal amountso 

(b) The serial test which tests to see if any digit tends to 

follow another. 

(c) The poker test which is named after the card game and examines 

the digits in blocks of five for five of a kind, four of a kind 

etc. The frequency of these hands are then compared with the 

expected distribution of such hands o 
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(d) The gap test which inquires into the gaps occurring between the 

same digits in a series and compares this with the theoretical 

distribution~ 

Although these tests are not sufficient, the authors feel that collec­

tively they are powerful. 

Hith the foregoing criteria established, Kendall and Smith attempt 

to set up a random series by selecting digits from the London Telephone 

Directory in a haphazard fashione Even though they took what would seem 

like extra precautions to avoid bias, the results of their tests indi­

cated significant bias. 

They then constructed an electro-mechanical device to produce random 

digits. Essentially, it consisted of a wheel divided into ten equal seg­

ments with a digit assigned to each segment. It was driven by an elec­

tric motor whose speed was accurately controlled. The operator on a 

separate circuit controlled a neon lamp whose flash was of such a short 

duration that the moving wheel appeared to be stationary . The nwnber 

that appeared under a previously fixed pointer wa.s recorded as the ran­

dom digit. The actuation of the lamp was kept haphazard by having the 

operator move a stylus over an intricate maze of circuitry which, it was 

maintained, caused the light to oper~te in a random fashion ~ 

A table of 100,000 digits was produced in this fashion and, based 

on their tests, were considered acceptable as Random Sampl ing Numbers [ 1).. 

2. RA~~ Corporation's Table of Random Digits. 

Kenda.ll and Smith's table appears t o have been satisfactory for a 

number of years; at least, there were no other tables published . In 

1947, a group of research workers l.n t he RAND Corporation re sponded to a 



growing need for random nur.1bers by producing a table of one million r an­

dom digits [ 2 J . These ~rere needed to solve va.r i ous computerized 

research problems by experimental probability procedures~ Such proce-

dure s were called by the colorful name , Honte Carlo Methods o For many 

of the problems that HAND was working on) the need for numbers far 

exceeded those of Kendall 8nd Smith's Tables. In fact , it meant that 

these tables would have to be used time and again in a particular prob-

lemo This presented the consequent danger of introducing unwanted cor-

relations. Such a grol-ring thirst for random numbers was , of course, due 

to new problems and rapidly developing computer technology available f or 

solving these problems. 

RAND 1S table was produced by electronic-mechaJ:ical means and was 

apparently more sophisticated than Kendall and Smith's machineo 

In principle the machine was a 32-place roulette wheel whi ch made, 
on the a.vera.ge, about 3,000 revolutions per trial Rnd produced 
one number per second. 

It appears that the engineers designing the device did have many 

problems because the original machine showed statistically significant 

'biases and had to be modified extensively o Further, even though elec-

tronic checks were continually made, after a month the results of tests 

of a block of nunmers produced showed significant bias c This i ndicated 

that the machine was running dolorn even though the electronic checks were 

acceptable. 

3. Pseudo-random Number Generation . 

While RA~~·s table was suit able f or work with punched card compu-

ters, it proved impractical v.ri th t he advent of high speed electronic 

computers because: 
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(a) it placed severe storage requirements on the machine 

(b) reading in the tables was slm-1 

(c) much larger tables were required for the solution of certain 

types of problems~ 

These shortcomings led to an interest in methods for producing 

"pseudo-random" numbers by arithmetic means~ fl. definition of this tern 

was given by D. H. Lehmer as: 

A pseudo-random sequence is a vague notion embodying the idea of 
a sequence in which each term is unpredictable to the uninitiated 
and whose digits pass a certain number of tests traditional with 
statisticians and depending somewhat on the uses to which the 
sequence is to be put. 

One of tne first methods used was proposed by von Neumann and Metro-

polis wherein an arbi tr<=~.ry n-digi t number, Y0 , was selected. This num­

ber was then squared and Y1 was produced as an n-digit number from the 

2 
center of the 2 n-digits of Yo ~ The process was then repeated, produc-

ing Yi+l from Yi. 

Although this process generated pseudo-random numbers, its period 

was not predictable. Further, it was demonstrated by Do H. Lehmer [3] 
that, in general, it would not produce a very long cycle before the 

process degenerated into a sequence of zeroso Consequently, it could 

not be recommended as a source of great quantities of random numbers& 

During the second symposium at the Harvard Computation Laboratory, 

D. H. Lehmer suggested [3 J that the multiplicative congruential rela­

tion (See Appendix A) 

(mod M) (1-1) 

could be used where the least positive residue is taken as the generated 
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number.. In effect, this statement says that ( Yr+l - LYr ) / M is an 

integer. The modulus M could be selected so as to be compatibl e with 

the base of the machine being used; that is, it could be of the form 

(2P) or (lOP). P normally is selected to be the number of positions 

avv.ilable in a word of the computer being used. Further, in a binary 

machine, with a proper selection of L, the period of this generator is 

2 (P-2). 

Using P in this way avoids the necessity for performing the final 

division operation in most high speed computers. For example, in the 

CDC 1604 using a modulus of 247, the _multiplication ( MUI) of the numbE;r 

L by Yr positions the product in the QA registers. The 47 low-order 

bits of this product in the A register are, in fact, the desired resid-

ual or the newly generated random number. 

Although such a method is relatively fas t, nevertheless , it does 

use the multiplication command which, f or a computer , is tirr.e consuming. 

Greenberger [4] proposed that Lin equation (1-1) be modif i ed to 

( 2A + 3 ) Y r (1-2) 

with A ::: 3. By doing this, the multiplication could be performed by a 

shift command and 3 add commands which represent ed a considerable saving 

in time over the straight multiplication instructiono Further, he shows 

that an L of this form does satisfy the conditions nece ssary to 

insure the full period of 2P- 2
e 

Another variation of equation (1-1 ) was proposed by Rotenberg [ 6 J 

whose generator became 

( 2A + 1 ) Y + C 
r 

7 
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This again was faster than Greenberger's model by one add instruc ­

tion but, unlike the former, this gave a full period of 2P for A ::: 2 

and C an odd integer Q 

Equations (1-2) and (1-3) will be investigated in Chapters II and 

III for use as pseudo-random number generators for the CDC 1604 computer . 
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I I. EMPIRICAL TEST PROCEDURES 

1. General 

Previous studies made using other machines [s] [6] [1 ] indicated 

that the quality of the genera.ted pseudo-random numbers using equations 

(1-2) and (1-3) can be very sensitive to the se]ection of A.· Aside from 

a guarantee of the period length (See Appendix A), there is, presently, 

little mathematical theory to aid in the selection of parameters that will 

enhance the random attributes of the generated samples. The task is 

largelY an empirical one wherein an A and a starting value, Y
0

, are se­

lected and the subsequent output is submitted to a battery of tests~ 

Such empirical analYsis can only give general indications as to desirable 

parameters because it is only practical to investigate a small portion 

of the total cycle of the generator. This fact can be appr eciated by 

observing that using a modulus of 247 in (1-2) the fracti on of the full 

period that would be considered, if even, say 109 elements were tested, 

is approximately 10-3 . 

As has been cited in Chapter I, the tests for randomness offered by 

Kendall and Smith were designed to check on the randomness of the indi­

vidual digits of their table of random numberso The generators under 

discussion here, however, produce pseudo-random numbers. Consequently, 

those tests that lend themselves to investigat ing certain properties 

associated with random numbers rather t han those associated wi th indi-

vidual digits are f avored in the i nvestigative work here i n reported~ 

Should a requi r ement arise for random digits when usinp, equations (1-2 ) 

and (1-3), only the high order (left - most ) bit positions of the binary 

representation of the generated number should be considered . (See 

Appendix .A). 
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2. Uniformly Distributed Random Variables. 

Many uses of computerized sequences of random numbers require that 

they be uniform [ 0, 1] • Not only is this distribution used in its own 

right but numbers from this distribution may be used to produce numbers 

·with other distributions. Converting the generated pseudo-random numbers 

of equations (1-2) and (1-3) to uniform [o,~ is quickly accomplished in 

a high speed digital computer as it merely requires the positioning of a 

decimal point to the left of the generated numbers. (See Appendix B.) 

3. Description of Tests. 

The following tests wer e performed on the blocks of numbers forming 

a generated sequence. 

(a) Frequency test: The classic chi-square goodness of fit test 

was used as a frequency test [9] This test divides the unit interval 

into k equal parts. The generated numbers were each checked and a tally 

kept on their frequency distribution within the k intervals. This is, 

perhaps, the most frequently applied of the random tests~ 

Attempts have been made to establish some sort of an optimal sl.ze 

for k. Mann and 1~ra1d , in t heir paper [ 8 J , present a procedure by 

which the lengths of the class intervals are determined so that the pr ob-

abilj_ty of each class under the null hypothesis is equal to 1 /k where k 

is the number of class intervals. They establish a Theorem which says 

that, in the limit, the best (defined by them) val ue of k is given by 

l/5 

k = 4 (2~~-d) 
where C is determined so that 

1 

2Tf 
e d X 
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is equal to the size of the cr itical region (probability of the cr itical 

region under the null hypothesis) and f,T is t he number of random element s 

generated. For significance levels of .01 and a05 the cor responding 

values of C are 2.327 and 1.645 respec t ively. These, in turn, lead to 

k:::::::: 88 for .. 01 and k::;:::; 114 f or .05 with N 5ooo .. A k = 100 was used in 

the large sample tests reported on in Chapter III . 

(b) Serial Correlation : This test was set up following the formula 

given by Kendall [9] . Lags from 1 through 10 wer e examined . 

(c) Run test: The nunber of runs up a nd d o~m were examined and com­

pared ;uith the expected theoretical distribution using a chi-square teste 

The first number to be examined i s compared with t he next number i n the 

sequence, If the second is larger than the first, a run up of s ize one 

has occurred but is not yet r ecorded . The second and t hird numbers are 

then examined in the same way. If the third is r reater than the second, 

a run of size tl-10 has occurred but is not yet r ecorded. If th8 t hird i s 

smaller t han t he second, a run of s ize one i .s recorded etc . [1o] 
(d) Moments: The first four central moments were computed and com­

pared wi th t h()s e for t he unif0rrn ['.,1] dist r i bution. 

(e ) Poker Test : Thi s test was us0d t o examine the sequenc e of 

digits within a number. St art ing a t t he hi ghes t order bit position, the 

digits were grouped to give five octal digits (15 bit positions ). The 

noker hand va lue of these f i ve di gits was tallied. The next 15 bit 

positions of the same random nwnber were slinilarly examined and tallied. 

The succeeding generated nuMbers Here examined in a similar fashion. A 

chi-square test was per formed on the re sul tso 
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4. Small Smnple Tests. 

Exploratory tests were made on generators (l-2) and (l-3) using two 

different starting values, Y'J = l and Y0 = 246 - 1. Sample sizes of 

100 were taken at each: A = .5, 10, 1.5. $ •• ,4.5. This was done in order to 

ascertain, in a general t•ray, the sensitivity of the generators to 

changes in A • The results presented in Tables 1 - 8 of Chapter III 

indicate that for these particular starting values the selection of A 

is critical. It further confirmed that a good selection of A was appro:x-
1 

imately ( 247) 
2 

for both generators. This supp 'rted the rule of thumb 

that was offered by Greenberger [.5] 

Selection of Y0 = 1 also gives an indication of how the generator 

wou.ld respond when faced Hith a lovt number. Cases have been reported 

[ 7] where, when this occurs, an unfortunate selection of A will make 

the generator extremely sluggish and can produce several hundred low 

numbers before yielding a more chaotic output . This succession of low 

numbers gives, in effect, a sequence all below 0.5. Such a char acter-

istic, obviously, is undesired. 

Parallel procedures were followed usinr; a sample size of 1000 nwn-

bers at each A. 

5. Large Sample Tests. 

Having selected a value of A from the results of the small s:1mple 

tests, five blocks of 10,000 numbers were generated and subjected to the 

battery of tests. 

6. Hodifications. 

Experiments were conducted t :> investigate the quali t y of pseudo­

random numbers generated by addressi ng t he output of one gener ator t o a 

12 
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second one having a different value of A. This linking process for 

equation (1-2) and (1-3) can be described as follows: 

y - ( 2A + 3) y 1 
r r-

(mod 2h?) 

(2-1) 

where ~{r = 1, 2' •••• e. 0. )becomes the sequence of interest. 
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III . RESUL'l'S ~ NT) C )l'JCLUSI ,JNS 

1. Interpretation of Data. 

No attempt was made to select the best parameter A based on the 

small sample tests discussed in Chapter II. Rather, the observed data 

was prepared in tabular form for each of the generatorse T!"lis allows 

general comparisons to be made on the effects of changing the inputs on 

each of the generators being investigated. In this way, certain ranges 

of parameters are observed to produce small samples v-rhose performance is 

consistently poor under the battery of tests. It also permits a compari-

son of one generator with the other as A is varied. For if one assumes, 

as will be done in this paper, that the generator that exhibits the 

least number of these "poor" indications is the preferred generator 

such a tabulation will make it apparent. This assu1. p·,ion does not take 

into account the differences in speed of generation between (1-2) and 

(1-3). In the CDC 1604, this difference is one add instruction or 7.2 

micro-seconds per word and although this is a consideration, for pur-

poses of this analysis, it will be considered minor. The same can be 

said of the differences in cycle length between the generators under 

consideration because each of them is extremely large. In short, the 

point of focus in the discussion to follow is to be centered on the gen­

erators ability to produce pseudo-random numbers that are of practical 

use. 

A particular parameter was considered "poor" if it failed to pass 

anyone of the following arbitrarily selected criteria: 

(a) The frequency chi-square statistic, x9
2 must be 

3 0 3 c::: x92 :::: 15 0 9 that is' for 9 degrees of freedom the 
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critical values of the chi-square were selected as o05 anrl .95. 

(b) No long runs; where a long run v.rill be considered a run of 

length six or greater for samples of size 100 and of length seven 

or greater in samples of size 1000. 

(c) Serial correlation coefficients of lag one must be less than 0.2 

for samples of size 100 and 0.05 for samples of size 1000. 

(d ) Mean greater than or equal to 0.430 and less than or equal to 

2. Results of Small Sample Tests. 

Tables 1 through 8 irrlicate the r ·esult3 of varying A in the gener-

~tors 

y 
r+l ( 2A + 3 ) Y (mod 247) (3-1) r 

and yr+l - ( 2A + 1) Y + 1 (mod 247) (3-2) r 

In tables 1 through 4 Yo = 1 while in tables 5 through 8 Yo = 246 - 1. 
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0' 

TEST 
5 

ll 9 .. 2 
FREQUENCY I 

i x2 2 15.5 9 

SSRIAL 1 .132 

CORRELl\. TION 2 .oo5 

1 .475 
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I 
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l 

RUNS 7 2 0 

1. Sample size 100 
2 . Sample size 1000 

10 

4.8 

4.6 

.049 

.030 

.469 

.500 

.o8h 
-

.083 

0 

TABLE 1. 

TEST RESULTS ON: 

12 

10.8 

10.4 

-.175 

-.042 
-· 

.498 

.508 

.098 

.082 

0 

Yr+l = (2A + 3)Yr (mod 247) 

y\) = 1 

A 

20 25 30 35 40 45 

11.6 13.6 10.8 7.8 16.2 17.4 
-

7.1 4.1_~ 8.5 8.4 4.5 5o9 
-

.215 .313 .037 .143 -.')72 -.1.50 

.039 .026 .oh4 .013 -.032 .018 
---- ·-·-··--

.459 .l~25 .475 .467 .517 .479 

.h88 .J~93 .498 .490 .500 .502 
------· ... --------

.074 .090 .101 .090 .093 .069 
--· ·--------·· 

.087 .082 .. 084 .082 .084 ~083 
----- ... --------------- ----· ·---

0 2 1 0 0 0 

----· 
THEOQ 
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x2 
9:05 = 

16.919 

-----·-
G.OOO 

f--------

o.5oo 

-----·----.. --

0.0833 

. - . ·-

0.0285 
---- - -------"---·--------~ ---···. 
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VARIANCE 

aUNS ::.6 

RUNS ::7 

TABLE 2. 

TEST RESULTS ON: 

- A 
Y r+ 1 = ( 2 + 3 ) Y r (mod 247) 

Yo = 1 

-
A 

-----------------------------~-----~~~------ -j 

17 18 19 20 21 22 23 24 
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VALUE 

·--------=..,-=-_,_____ -~= - . -- - . ~- --· ~-- - ----"~"=.,.,.=---~-~~~=~;f-.::, -·--__________ -.__ 

11.4 8.0 8.0 11.6 9.0 16o8 11.2 15.4 2 
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7.6 5.4 8.3 7.1 7.7 8e8 16.3 14.0 16.919 . 
------------1 ------------~---- .......... _____________ _ _,._ 

I 

.231 .135 .156 .215 .024 - .. 006 -.1)02 .189 
-- ---- --------------------------·-·- I 0 o 000 

-.006 .006 .036 .039 -.005 -.038 .019 o091 

.. h75 ·'+99 eh85 - - I e426 .425 .459 .544 .h56 
------- o.5m 

·'-l-92 .')02 .502 .J.L88 .5o4 .495 . 513 .471 
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~098 .094 .086 .07h .083 o093 .072 oiJ90 
I --------- .... 'l 0.,0833 I 

1
2 .084 .,086 .084 e082 o0-~7_--~~~~-~----_:~84 ____ :2~! ____ :_~ -·-----1 
t~\ ~ ; __ ;_==±--~~~~=--- :.~~- .. __ : . -· ~--·----~-1;~-:~-j 

1. Sample size 100 
2·. Sample size 1000 



f-J 
co 

TEST 

I - ---~ 

FREQUENCY 
2 

1..9 

I S2:RIAL 

5 
---- r===~----

Ill 27.0 

12 1 4.6 

TARL~ 3. 

TEST RESULTS 0)1 : 

Yr+ 1 = (2A + 1) Yr + 1 (mod 247 ) 

Y0 = 1 
---------------·- - ------

A 
·---------- -~------------------

10 15 20 25 30 35 40 45 
THEO. 

VAlUE 
-----~- ---:::::: ::::::::::~1~---. --·--·-

10.6 23.e 9.0 ;:>5o ::;,.. 50 ~5o 8.8 >50 X~: 05 = 
~--··------·- ~--··-----------------.... --·----------------

10.1 7.2 5.0 :> 50 :::-50 8.1 11 .0 ::>50 
16.919 

-------.-15-0-------~-055 .999 --~-999 .. 943 .029 .1~26 r----,l l .200 .234 

CJRRELA TI ON 21 .081 .030 
-------- ------ -1 ') .ooo 
.002 .046 .,999 .982 .387 - e018_-J42~ 

11 .h1·1 . .J~83 
!-lEAN 

.479 .467 .409 -.013 .319 . h74 .427 

1
~-------· - -----·------------------ 0.500 

, J: __ .~e~ ____ :So~---------·~97 · '-~9~~~--·398 _______ : ~~! _, _ ---~~81 .h99 .425 j ______ _ 

!11 . 098 -.090 -----~-~!___ ____ .o7_: _ .oo~ ___ :?C>o __ .o8~--·-?~-~--·~96_ 1 0_0833 
! 

~ 2 .085 .086 .082 . 081 .001 .087 .085 . '181 --,~-100 t--- -----J 
1 

HUIJS ::6 !1 1 1 1 __ 1 >15 >~-----=:5 __ 3 0 ~-~~:28~-~ 
1 1 I 

RUNS =::. 7 '21 1 1 0 1 > 15 >15 ;:> 15 ;:> 15 0 i 0.0388 I 
- ---- ,___ _________ _...._. .... ___ ••• -··---·---·-...... ---··•• ~---o-w•w• ........ ---.-.-. • .._ ~-.... .J>o _,. • ._, ~-.. --.. ··----_.... ... ..---~-~ -----·- ... --.-· .. .._._....._.,. .. _. ________ •• ____ _ 

VARIA NCE 

1. sa~p1e size 100 
2. 3ample size 1000 



1-' 
\.() 

TABLE 4. 

'J'Et>'T Rii.:SULTS QN: 

Y r+ 1 = ( 2A + 1) Y r + 1 (mod 24 7 ) 

Yo = 1 

- --·------
TEST ~ 

16 17 18 19 
A THEO. 

20 21 22 23 2h I VALUE 
- - - - •-·-a•- - .. - ... -- .. - ·--- .. -..... -·- ...... ···-- --·--·~· ···-···---....::::..--=;~ J;:.:;e:;;::~==::.:..-:: . 

FREQUENCY 1 61 30 16.4 4.8 
x2 

______ .. _ - - -· 
9 2 15'.4. 7.3 8.8 8.5 

9.0 4.4 29.6 1~88 900 x;.A~= 
------------·-·----·-- .. _.. 'J; 

5.1 14.8 26.5 4915 900 16.919 __ _,_,__ .. 

SERIAL 
1 • 765 • .308 .185 • 204 
----·-

CORJlEIA TI ON 2 .086 .015 -.013 .021 
----------.. -------·· 

1 .348 .385 .417 .467 

;SS-----~ -:~s~ -·---=-. 0-5-5 - ~--. L-,oi:--~--.99-- r--····--·---- . 

-~~~-~~- -~~o~j-~~~~~~-~=~~:398--~--~--~-9 --9-=-1 ~-.c~--
467 .468 .390 .Jl5 .204 

o.soo JV;EAN 
21 

.. --·----
.489 .499 .501 .491 497 .L!71 .415 .154 .199 

I 
1~ .092 

1/ARIANCE --·--·------
2 .o86 .o84 

:71 __ _:_08~---:~~~~___:05~-- __ o_~~-1 0.0833 
081 .081 o081 .051 0$00 I 

I 

RUNS ::.6 1 4 1 
. ----

HUNS ?..7 2 1 ==--15 5 
- --

----------r------
o 0 ::> 15 l 0.0285 

-----·- ---·----.. - .. --·-----~-- ....... ······ ... -- --··-·---· -- ---·-· 1- . . . . --
---~---~-------5!__ ______ ___ ? ~ ~--· > 15 l ~--·-0 38~--

------------· 
1 0 

1. Sample size 100 
2. Sample size 1000 



f\) 

0 

TEST 

TABlE 5. 

TEST RE~ULTS ON: 

- A 
Yr+1 = (2 + 3) Y r 

y ') = -246_1 

(mod 247, J 

·-------------·-· ·-·-·---

-- , -- 5 --:---~:- 20 -f;;---- 30 ____ 35-- 40 -···-····-·45 __ _ THEO. 
VALUE 

I I - -:;:;;-_1 _,;;:- .... ~ .... _:-.....:;:-_.:::....;:o:=--~-=,:;;.=-- - - =-==""=·-::--=-~:.--==::::::.-===::--=-::-·==-=-:;:--~= -. ...:=:::..z:--c-:::--·::. 

I ~REQUENCY il 17.2 2.6 6.L -~~--12.4--~--5~----~=---1~ ~~:~i9= 
-----·- i2-' ·- 4.38 ---~=~--1!.:5 ______ ~~ .8 --· 6.9 1~.~-----~~-~6--~:~-----~- ....... ________ -~ 

SERIAL :1 ; 0.103 - .. J$0 -.077 .029 -.046 -.007 -.041 .015 .040 ; 

~ELATION 121 __ . o32 :. c39 ____ :::_: «,~ _:::_: ~2 ?._ _ ~o: 9 _ ~ ~~o- ~_-c 39 -- -:-o22- -- -~. 002 1 ° .oo I 

l1 j .469 .L,so .513 .527 .S37 .52o .514 .487 .5o7 1 l 
HEAN j ~- --------------------- - --. -· 

1

1 o.5oo ! 
1------~i-, 2 +-\ --·~-6 _ _ .4_9_9 __ .:_~~ __ .511 __ ..:__~9~---·~20 _____ ·~97 ___ . -0-~~-- ___ _:__~~:__ · - ·--- •• i 

1 j_ .075 .OT1 .073 __ :_07~--~084 .075 .0~'------~~- ::76 I 0.0833 I 
2! .oe6 .o85 .o83 .o81 .o85 .oB1 .o84 .oRB .089 l I 
~ ------------------------------- ---------· ----· ·------1 I 
11 1 0 1 0 0 0 0 0 0 I 0. 0285 1 

21 J 0 -- () . --~--. -·--;----- ----··-0 . . . . -- 0 - ... -- 0- ----0 --j 0.0388 

VARIANCE 

RUNS ::6 

RUNS ::7 
·-·-······- ~- ......... -----------------·----.--~---------------- .. ..... 

1. Sample size 100 
2. Sample size 1000 



1\) 

~ 

TEST 
16 17 

TABLE 6. 

TEST RESULTS ON: 

Y r+ 1 = ( 2A + 3 ) Y r 

46 Y0 = 2 -1 

A 
---------...-

(mod 2h7) 

THEO. 

18 19 20 
----------------- -· VALUE 

21 22 23 24 

t===== I I - ---- ------- - - -----------

----------------·--a--------1 

______ :...--::::-.:::::::--..::::::=:.....~=:::::--:::::--=.- --=-:.....:...._ ~-=-~ 
FREQUENCY 
x2 

9 

1 ! 10.4 19.4 19.2 9.2 19.0 12.6 7.2 8.0 5.4 2 
t - ----------------- Xo.o5 = i 

2 5.o 9.1 6.7 13.e 11. 8 5.7 10.6 9.o 19.1 16: 919 ! 
, ~~-~18~- .0~3 -----~:~~;-----.030 .;;;---~-~97 -----~~~~--------~·;;;---=-:~ili··--r 1 

SERIAL 

CORREIA Tl oN [~ I .02~---. 0~~- • 022 =-;;6--~. 0_2~-~=~;2;-~--~;;;3 --~~-=~~~~~ ___ 0 
.oo i 

1~513 .429 .b38 .511 .527 .b43 .5o4 .)00 .455 I 

I ~AN !2 l-5o1 .5o9 .4n .514 _: 51~-=-·~86---~ .48_7 ~=:s; -~-:48~-- _0~ 5~0 -1 
I !11 .073 .c68 .081 .on .077 .o73 .012 .o96 .o81 J' I VARIA NCE I ~ . -------------------·- . - 0.0833 
. 21 .083 .086 .085 .081 .081 .083 .082 .086 .086 . 

-r-·-- ------- --------------··--------·----------------~-------- -- ------------1 

r- ~::~ : ;-- ~t- : ----- ;-- ---- ~----~ ------:. ----~ ------ --; --< -: :::::l ____ _..___,_. ------------------------------ ... ·····-·'-··---------------------------·--------· -

1. Sample size 100 
2. Sample size 1000 



1\) 
1\) 

TABLE 7. 

TEST R?S ULT S ON: 

Yr+l =: (2A + 1) Yr + 1 

Yo = 246_] 

(mod 247) 

l:T ------~---==-~~~------------~~~---~ ------------~=-----~----=----~-------~~~---------~----=-~~---·---,-~--___ ---TH~~~----- ~ 
S 10 15 20 25 30 35 ho 45 VAIME 1 

I 

I ~Q~N~- - ~ - -- -~:i. ---~~.o ~:··~~~-~ · .. ,, ·;~- . ~~~=~--~;;:~~ ~~ ~~-- -_ . s·:; ==~~-: -~~~~; ··. 
I 9 21 6.8 12.S 9.8 6.8 l.J4hL 103.9 6.8 3.S 1784 ; 

~=£-TI~N f ::::;--~-:: -~-:::~ --:;;---~;;--- :::: ~;4-1:- -~~-~~-:---- :~:~ I o.oo ! 

~-----·- ~-- -:5-~o·----~-~464- -.469- -··-:471 -·-···-:25c -- ·- ·.262 ---:·4-35 -- -·.491 .Ll8 , ' 
l JI'IEAN 1- ----------- - -- -- ----------·--------------- --- -·------· - - ... . - 0._5'00 I 21 .503 .482 .L93 .497 .289 .. 483 .497 • 504 J~24 ' -------- --- • . t-·- .. --------•------------· ...... -- ---- ...... _.. ••. --- •· . -· . •- -. o ... ·------- ·••• •··-----•-•·-------· . - • • ! 

~ .085 .086 .092 .081 .COO .000 .056 o076 .098 I 
VARIANCE 11--------------------- . --------·- - --------------- -- ----- 0.0833 I 

.

1 

-!~t--- .o84 .o86 -=-~~~---~~-85 ____ .o?_:_ _ _:_o7~ ___ :os:__~o ·~~ . J 

f-_R_u_Ns_:::_ 6 __ 1_1 ~ __ 1 ______ :_ _______ 1 ______ __ ! __ . _____ :_~~-------: __ 1~--- ~-1~----------~ ______ --~- --~~~s ·I 
1 

______ _ . 1 2 _~ 2 o 1 4 ;:> 15 >15 =IS =15 o .o388 I 
------------- i. . ----------------- -------------- .... ------------------------------------- ... - __ ___j_ 

1. Sample size 100 
2. Sample size 1000 



TEST RESULTS ON : 

TABLE 8. 

Y r+ 1 = ( 2A + 1) Yr + 1 

Y0 = 246-1 

(mod 247 ) 

A 
TEST . ---- ----------------------------------------·---------- TEE O. 

I 16 17 18 19 20 21 22 23 24 VALUE 

FREQUENCY ~·~ 43.6 :;~;=-:;~o~-:c~; o·~~=~~~-~~ -~-~= ;~~:-=- 4~~ -~=:~' -~~ X~:~;: I 
X 2 ~------------------------- -· ·-··-··-----· -- .. -------··--.-- ---------------- .. -. . 116 919 I 
· 9 2. 8.o 12.7 3.7 12.6 6.e 18.9 272.1 4915 7477 · ' 

I I ' I ... --~---------------··--- ---------- ·---------·-·-------·--·-··-··- I ! 

N I ~~~~ATroN ll--.6~-- .:117 __ .o6_a ___ .oo3 .o58 -:.~_s~_c; ---~-:_~~-----~·~~~ -------~-~~9 o.ooo : 
w ! _________ 12! - ._o~~- . o4o __ : ~~ - _ _::_o_o6 ____ .o~ . o04 _ . . ._on -. 3 98 • 999 I 

I MEAN t~ . .448 .4!9 ... . • 46~--- -:_~B ___ ·~~=---·-----·· ·467·--·---~435 . • 395 . • ~5~ . l 0.500 
l21 .503 .488 .497 .486 .497 .474 o41J .404 .270 ll 

1------·· t t· --------·-·---·-·-----------·----------· ------ ··------------------------·-·-
\1: .o64 • 01 3 • o? 3 .015 .o81 .o82 .oss .os1 .ooo 1 

VARIANCE ! 1------ - · ---·------------·-------------···--···------------ -· ·- · ----------~ 0.0.833 
I j 0 \ ' .21 .. o7, .o85 .o85 .o84 .oe5 .o8o .o81 .o51 .o8o 1 

I 
rt----------------------------------------···------------------------t· --.-

RUNS == 6 il 4 2 2 1 1 0 0 0 >-15 0.028S I l t--~------------··- ·-·-···- .. -·····--·-··· -·--·-·-···-·. ----··· --·--·-·----·---·-. ---·---·----···-----~- ... ., ... l ! 
! HUNS ~ 7 :2j = 15 4 0 7 4 0 0 0 ~15 I 0.0388 l 
- ---· . -·------------- ·- -------------------- ---- ----- ------- ·-·-- -- ---- ------------- ___________ L ____ -- ---- ----~ 

lc Sample size 100 
2. Sample size 1000 



In applying the criterion of paragraph (1), the number of values 

of A reflecting a "poor 11 sample in the case o~ (3-2) is greater than 

for (3-1). Ge!lerator (3-2) is very susceptible to long runs and, above 

an A of 25, cannot be considered a practical random nwnber generator. 

Using different starting values did not improve the output of (3-2); 

for Y ') = 1 only an A = 21 passed and for Yo = 246 - 1 no value of A 

passed. Even relaxing the criteria so that two failures are allowed 

before an A is considered "poor" only admits A = 18 and A = 20 as being 

acceptable for both starting values. Further, using a value of 

C = (.788) 247 as suggested by Coveyou [1o] did not mal<:e any notice-

able improvement in (3-2). I 

Table 9 shows the acceptable A's for generator (3-1). 

TABLE 9 

:---------r;------- - - --- - -- ·--- --- --- ---------------- · -------·-· ···- . 

Yo Acceptable A's 
'-----1'-------·-----------------··-·-----·----l 

jl-_1 _ __ -+;!_1o ____ 1_5 ___ 1_8 ___ 19 ___ _ 

1246-1 
I 
I 

I . 
19 21 

21 22 35 40 

22 25 35 4o 45 ll 10 16 
_L_ ___ _ _______________________ __. 

The above test results indicate that for these criteria generator (3-1) 

is much less erratic than (3-2). Six different values of A, 

( A = 10,19,21,22,35,40), are acceptable using both starting values and 

therefore it is suggested that A be chosen from these values. 

Some tests were also made using the approach suggested by equation 

(2-1). Aside from some improvements in the poker tests results, no 

noticeable improvemen~ were made. Using this approach increases the 

time of generation per word and unless the results registered a 

24 



significant i mprovement, it cou;Ld not be economically justified. 

J. Results of Large Sample Tests. 

Using the findings of para~raph (?) above, an .'\. = 19 "t<JaS selected 

for the five large samples to be tested. This particular value was 

se1ectoJ over the fast•3Y' A = 10 because it appeared to perform slightly 

botter than A = 10 in the poker tests. The results are presented in 

'Tables 10 through 17 and indicate that the samplt3s satisfactorily pass 

t he battery of t ests. Figure 1 .shows the average serial correlation of 

the five samples for lags one to ten. ·)ver these lags the correlations 

ranged from +0,0182 to -0.0201 . 

h. Remarks on Computer \·Jork. 

All of the t ests used in thi~ paper were written using FORTRAN 

l anguage. These have been catalogued and are available at the Computer 

Center at the United States Naval. ?ostgraduate School. Progrart1s using 

an A = 19 in Equation (3-1) have been written both for Scrap and for 

Fortran and are available in the computer library. Appendix B lists 

the machine language steps required to produce a random nwn'ber accord­

ing to (3-1 ) and the additional steps r equired to convert it to a 

floating point fraction between zero and one. These steps have been 

included to allm..r a programmer a ll.ttle more flexibility in using the 

generator. In many cases, it may be easier to include these steps 

directly in a routine r ather than go to a computer library su'broutine. 

5. Conclusions. 

(1) To determine a :..mitable value of A in (3-1) t he methods used 

in small sample te sting are useful. Further refinements could be 

made by 
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0 
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FIGURE 1. 

AVERAGE SERIAL CORRELATIONS FOR TEN LAGS 
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TABI~ 10 

FREQUENCY TEST 
---~-- -· -- - --·-· 

I Ill #2 #3 #4 #5 L .. ·I- - ... - -------- • -r--·· -------·-----··- ~·-

i I • x2 I 3.39 ~ 11.66 5.'~6 13.36 7.41 9 I 
~ I 

I 
; PROBABILITT( I 

(. 90'. 95) (.20,.30) (.30,.70) (.10,.20) (.50,.70) , , INTERVAL 
!-- · I 

I 
I 2 102 .J44 91.98 75.34 119.52 94.0 I : x99 

I 
I 

PROBABILITY (.50,.25) (.50,.75) (. 95'. 975) (.05,.10) (.50,.75) j 
Il'J'rERV A L 

.)<.. ( d \ . 1· i x2 X 2 1 
d h X 2 . th b d " c, 1 1mp 1es c -<:; P l v ;::.. 0 ~ -< w ere 0 1s e o serve 

value of the chi-square statistic. For example, (.90,.9S) i mplies 
r 2 l 

• 90 <: p L X >- 3. 3 9 J -<: • 95. 

RUN 
SIZE 

TABLE 11 

RUN TEST 

--· .. -----------· ..... ---------- ..... ---- ---- .. __ . T. . 
NUMBER OBSERVED I 

__ 

1

1 EXPECTED i 
If 5 NUHBER I 

i : 

t--~~------

#2 #1 113 114 

~:::::r::: I 
523 5o~ ___ L_ 52! .65 1 

113 143 l 115.04 i 
. _. .. ..... . ·--·--·---~-.L-- - - _j 

16 lB i 20.33 I 

2 2 
1 

3.8 1 
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TABLE 12 

RUN T$ST CHI-SQUARE RESULTS ,---.,..-----,---------·-··-··----·----·-- ·· -· 

#1 1!2 I'J #4 #5 
r---2 -::_~-=...:::.::...:::.:;,;-=~-==.=::::::===--=- --·· --- - ·-

x4 4.22 3.59 3e60 2.48 9.46 

PROBABILITY 
INTERVAL (.30,.50) (.30,.50) (.30,.5'0) . (.50,.70) (.05,.10) ! 

- ----·----!----,--------·--------- ·-·-- -------------

f=· 
I BUST 

ONE PAIR 
.. ~ ~ 

TWO P/\IR 

TABLE 13 

POKD1 TEST (FIRST FIV~ OCTAL DIGITS) 

·-r·------· -··-··--- -----------··--·-
#1 #2 #3 #4 #5 

,_ --- --· --- -.:.::·-~~~~----~~.::;;:;:..;:." .. :.:.::::;;;~:::-:.~ -

200lt 2027 
---·--

5073 5091 

1623 1597 

2000 

5109 

2010 

5205 

1475 

1979 

5163 

1616 

THREE OF A KIND 1035 1057 

1578 

1050 1046 991 

EXP. 
NUMBER 

1538.09 

-----· --------·-·- --------~-f-------·-·-·· 

FULL HOUSE 167 145 168 165 

FOUR OF A KIND 96 81 92 
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'fitBLE 14 

POKER TEST CHI-SQUARE RESULTS (FIRST FIVE OCT.\ 1 DIGITS) 

~~1 //2 #3 #4 

2 
X5 5.75 7.68 3.59 6.61 

I PROBABILITY ( .30, .50) (.10,.20) (.50,.70) (. 20, .30) 
{INTERVAL 
I 
I 

TABLE 15 

CK~RACTERISTICS OF GENERATED UNIFORM DISTRIBUTION 
(FIVE SAI1PLES OF 10,000) 

#5_ -~ 
8.18 I _, 

I 

( .1J' 0 20) 

r----·----·----- . ·- ---.--- '.._ .... _____ ....... ~ ........ __ ._ ......... - ~---··· · .... ---··~- . "-• ·----.. -----
SXP. 

1 2 3 4 5 . VALUE 
·- ......... - - -- ~..=..~-:;..~~-;'.;l):~~~~-=:.::..::: .. ~-- - == 

1-lliAN .50103 .50584 .50076 .50358 .50027 Oe 50IJOO 
--------··- ···-· -·· ------ -- -·-~ 

VARIAI~CE .08339 .084813 .08357 .08306 .08477 0.83333 --...... -. ... ____ , -···---·------ --------- ~ 

SKEVHlliSS .00029 .00073 .00014 .00002 e00001 0 .000'')0 
··--·-·-- .. ------.. ~-- --·---... --------·- ·····--- ... -... ____ 

KURTOSIS .01255 .01288 .01246 .01238 .012781 0.01250 
__j 
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POKER 

HAND 

TABLE 16 

POKER TEST (SECOND FIVE OCTAL DIGIT POSITIONS) 

BUST I 2055 2053 2065 1997 2081 2050.78 l 
ONE PAIR -·- --r sns· - slo4 51S6 SJ.4A 5128 . T. 51;6. 95 I 

TW~ PAIR ------ ~ - 1539 .. ~561J_ __ :S2~ ~56~_~3_S_[ ~s3~ .09.1 

, I I 

::E H::s~:J-:=
1

;~ --.3:: _ - =~~-=!~~: ·· <:~ l--
1

i~:::: I 
::· I 

FOUR OF A KIND 89 79 75 101 89 85.45 

!Fin OF~-K-I~--~-----2 ______ 4 ______ 1 ______ 1_ 
5 2.44 

*Four and Five of a Kind combined for 5 d. of f. 

TABLE 17 

POKER TEST CHI-SQUARE RESULTS (SECO}ID FIVE OCTAL DIGIT POSITIONS) 

-
! 
i 
; 
I 

//1 

!.::===============~= I 
i 
I 
I 

0.18 

J __ _ 
PR IBABILITY l 
INTERVAL I :::... . 99 

#2 

0.982 

#3 114 

1.32 4. 85 

'iS {t 

1 .86 

----·--···- · .- ·-···--·------! 

( . 98-.95) ( .95- . 90 ) ( .50- .30) ,90- .80) 

·- -·-·-·--- ------------ - - - ----' 
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(a) selecting a feu more starting values, Y0, and tabulating 

the results as in Tables 1 through 4. 

(b) modifying the criterion used in the sifting process to 

meet an individual's unique demandso For example, if he 

desired an unbiased sequence of uniforms, he could tighten 

the restriction on the acceptability limits of the mean. 

(2) Based on the test results, Equation (3~1) is to be preferred 

to (3-2) as a generator of random numbers. The speed advantage in (3-2) 

of about 7.2 micro-seconds per word is masked by its demonstrated ten­

dency toward long runs and poor frequ~ncy distributions for most 

values of A. 

(3) Five blocks of 10,000 numbers each were tested using gener­

ator (3-1) with A = 19. All tests were passed satisfactorily and it 

is concluded that 

Yr+ 1 = ( 219 + 3) Yr (mod 2
47 ) (3-3) 

't•Till perform as a pseudo-random generator for the CDC 1604. 

(4) The chaining of generators as suggested in E.1uation (2-1) did 

not lead to any positive indications that a better sequence of pseudo­

random numbers would result. Unless this can be shown, the additional 

time of the generation is not warranted. 
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APPE!'JDIX A 

1 . General. 

In 1949, Lehmer [3] suggested using the multiplicative congruen-

tial method for generating pseudo-random nuJnbers on a digital computer. 

Since t~c:tt time, this me thod has been used, tested and reported on by :.3. 

number of investig,gtions, for example ~2] In using this 

me thod on a binary computer of word size P, tho recurrence relation nost 

fre quently takes the form 
") 

(mod 2" ) (A-1) 

where 1 is a fixed odd integer ~nd 0 -==Y ::: 2? -1 beine relatively prime 
r 

to 2P. This sequence is periodic, its length depending on the choice of 

L, Yr and P. t·Jhen the indicated j_teration is performed , say n times, 

(1-1 ) becomes: 
p 

(mod 2· ) 

and for this reason is sometimes referred to as the power residue method. 

The numbers Yr / 
2

P (r '= ·J , 1, 2.... ) become the desired uniformly dis-

tributed elements from the unit interval. Barnett 
,. l 
~~ in 1961 showed 

that necessA.ry and sufficient c ondi.tions to obtain a maximum cycle of 

2P-2 elements, all o f 1-.rhich are distinct, are : 

(a ) -
L 3 (l~Od 8) or (mod P) (A-2) 

(b) (mod 2 ), (A-3) 

that is, Y) must be odd. 

If these conditions are not met the cycle length can be ?.ffected 

and in some cases the process degenerates to zero. 
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2. Discussion of Equation (1-2). 

l'llhile the sequence produced by ( 1- 1. ) has been found satisf act ory, 

nevertheless, it does imply the use of the multiplication instruction in 

the computer. Relatively spenkine, this is a time-consuming operation 

and interest continued on methods that would avoid its use and still pro­

duce the desired sequence. Greenberger l4] proposed using an L of the 

form (2A + 3) Hhere 2 ::. A < P. It is seen that such an L satisfies 

the conditions necessary to insure a. cycle of 2?-2 • 'J'his f orm has the 

advantage of substituting a shift operation of size A and three add 

instructions for the multiplication operation. In the CDC 1604, the 

rnul tiplication instruction ~~ requires 25.2 plus . 8n micro-sounds; 

uhere n is the number of ones i n t he multiplier. ·'Jn the other hano, the 

shift instruction takes 2.8 plus .4s micro-sounds, where sis the nmnher 

of places shifted and an add inst r uction takes 7.2 micro-sounds. In 

operations where large quantities of random numbers are requir8d this 

saving can make a significant contribution toward reducing machine time. 

lJhen thi s f orm of L is translat ed to the CDC 1604, equation (1-1) 

becomes: 

(A-2) 

1.-rhere ~ith 2::. A -< 47 the period of' the sequence is 245, that is, 

245 distinct numbers are produced before the sequence repeats. Each of 

the numbers produced are odd and belongs to one of two mutually exclu-

sive integer sets depending on the selection of Y0 where, if r belongs 

to one set r+2 cannr;t. These two sets between them exl1aust all of the 

possible odd numbers in the interval 1 to 2
47

• Because the numbers are 

odd this means that the two least s i gnificant bit posit ions i n t he 
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binary representation of a number will not change, that is, their cycle 

is zero. The third bit position has period 21, the fourth 2
2 

and so on. 

For this reason, if random digits are to be used only the most signifi-

cant digits of a nurnber should be considered. 

No mathematical rules have been developed to accurately determine a 

particular choice of A although it is clear that an unfortunate selection 

here can result in an unacceptable generatoro Coveyou ~~ did offer 

a criterion for selecting A in terms of an approximation formula he 

derived £or the reduction of serial correlation between the numbers. 

Subsequently, Greenberger l5} introduced a correction term to be 

applied to Coveyou 1 s expression and demonstrated that even though serial 

correlation might be optimized, nonetheless, the generator might suffer 

£rom other shortcomings, such as producing long sequences of low numbers. 

3. Discussion of Equation (1-3) 

Rotenberg [6) tested a sequence 

L Y + C r (A-l~) 

where L and C are odd integers less th~n P and 0 .:: Yr.:: 2P. In this 

case, a maximum period of 2P is obtained for any 

L =. 1 (mod 4) (A-5) 

An L of the form (2A + 1) with A.:: 2 satisfies the condition of (A-5) and 

l-ras used by Rotenberg in his tests. He examined two values of C, 

C = 1 and C = (.788) 2?, the latter value resulted from Coveyou 1 s approxi-

mation mentioned above. Rotenberg reported that there were no s: gni ficant 

differences in his results using either one of these C values. 
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For the CDC 1604, this generator becomes 

y r+ 1 = ( 2A + 1) y r + C (mod 247) (A-6) 

This type has an edge on form (A-2) in that it requires one less add 
. 

instructor for each new number. It also has a longer period although 

this does not seem too significant in that (~-6) wilJ produce 245 

distinct elements. 

4. Sub Periods. 

It has been pointed out by Peach ~~ that in the case of (A-6) 

certain harmonics exist throughout its period. These tend, he feels, 

to lend a greater stability to the generated numbers than should be ex-

pected of a random sample. He illustrates his point by making frequency 

tests on large samples and notes that they a ppear to be unduly uniform, 

although his results do not ovenvhclming1y i ndicate this. \'.'nether too 

much stability is objectionable depends on the particular application. 

If a user wanted to estimate an unknown mean without bias then this 

characteristic might not be criticalo If the variance is a point of 

interest too much stability could be critical. 

S. An Example. 

To illustrate the multiplicR.tive congruential method consider 

equa.tions .( A-4) which with 1 = 5, v = o, C = 5, P = 3 becomes '- o 

yr+l = 5 (Yr + 1) (mod 23) (A-7) 

The sequence is determined as follows. 

Substituting Y = 0 into equation (A-7) gives 
0 

yl = 5 (mod 23) 
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This means that Y1 i s the remainder after dividing') by 23. This f ives 

Y1 = S. Substituting t hi s back into (:\-7 ) gives: 

Dividing 30 by 23 gives a remainder 6. Therefore 12 = 6. This is 

repeated giving a sequence yl = S, y2 = 0 , YJ = 3, y4 = 4, Ys = 1, 

Y(.) = 2, y7 = 7, Ye = o. of period 23. 
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APPENDIX B 

PROGRA1VJ1ING THE GENERA TOR 

~Iethod 

1. The Relation. 

= 19 + 3 L7 
Yr + 1 ( 2 ) Yr (mod 2 ) 

l,t,- ] 
y = 2 .v -

0 

Cf!.n be programmed for the CDC 1604 as follows: 

(a) Define: HASK = 400000000C)()(Y)!)00 Binary 
11AS!\2 = 2010100000001000 Binary 

Yo = 246- 1 

MACHI:N"E LA r\GUAGE R0UTINE: 

ENQ ( 0 ) 

LDA (Xo ) 

LLS (19) 

.:3CL (l~J.ASK) 

ADD (Xo) 

ADD (X ) 0 1 

ADD (Xo) 

STA ' y ) \~ \.0 

(b ) At this point, the random nwnber i s i n tl:e accumulator and has 

been stored i n X0 i n preparation f or t hB next number i f r equired. I t 

is now required to co nvert it from i ts present inte ger form to a f l oa t -

ing point fractio n on the unit interval. Th is i s done by continui ng on 

T,J'i th the following instructions: 
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AR0 (11) 

ADD (1-!ASK2) 

FAD (Iv'lASK2) 

At this time, the desired uniformly distributed n,1 number is in 

the A- register. The time of generation is about 90 micro-seconds per 

nwnber. 

40 




